17 research outputs found

    Vehicular Networks with Infrastructure: Modeling, Simulation and Testbed

    Get PDF
    This thesis focuses on Vehicular Networks with Infrastructure. In the examined scenarios, vehicular nodes (e.g., cars, buses) can communicate with infrastructure roadside units (RSUs) providing continuous or intermittent coverage of an urban road topology. Different aspects related to the design of new applications for Vehicular Networks are investigated through modeling, simulation and testing on real field. In particular, the thesis: i) provides a feasible multi-hop routing solution for maintaining connectivity among RSUs, forming the wireless mesh infrastructure, and moving vehicles; ii) explains how to combine the UHF and the traditional 5-GHz bands to design and implement a new high-capacity high-efficiency Content Downloading using disjoint control and service channels; iii) studies new RSUs deployment strategies for Content Dissemination and Downloading in urban and suburban scenarios with different vehicles mobility models and traffic densities; iv) defines an optimization problem to minimize the average travel delay perceived by the drivers, spreading different traffic flows over the surface roads in a urban scenario; v) exploits the concept of Nash equilibrium in the game-theory approach to efficiently guide electric vehicles drivers' towards the charging stations. Moreover, the thesis emphasizes the importance of using realistic mobility models, as well as reasonable signal propagation models for vehicular networks. Simplistic assumptions drive to trivial mathematical analysis and shorter simulations, but they frequently produce misleading results. Thus, testing the proposed solutions in the real field and collecting measurements is a good way to double-check the correctness of our studie

    Securing SOME/IP for In-Vehicle Service Protection

    Get PDF
    Although high-speed in-vehicle networks are being increasingly adopted by the industry to support emerging use cases, previous research already demonstrated that car hacking is a real threat. This paper formalizes a novel framework proposed to provide improved security to the emerging SOME/IP middleware, without introducing at the same time limitations in the communication patterns available. Most notably, the entire traffic matrix is designed to be configured using simple high-level rules, clearly stating who can talk to whom according to the service abstraction adopted by SOME/IP. Three incremental security levels are made available, accounting for different services being associated with different requirements. The core security protocol, encompassing a session establishment phase followed by the transmission of secured SOME/IP messages, has been formally verified, to prove its correctness in terms of authentication and secrecy properties. Performance-wise, in-depth experimental evaluations conducted with an extended version of vsomeip confirmed the introduction of quite limited penalties compared to the bare unsecured implementation

    Protecting In-Vehicle Services : Security-Enabled SOME/IP Middleware

    Get PDF
    With every generation, vehicles are becoming smarter and more oriented toward information and communications technology (ICT). However, computerization is posing unforeseen challenges in a sector for which the first goal must be safety: car hacking has been shown to be a real threat. This article presents a novel mechanism to provide improved security for applications executed in the vehicle based on the principle of defining exactly who can talk to whom. The proposed security framework targets Ethernet-based communications and is tightly integrated within the emerging Scalable service-Oriented MiddlewarE over IP (SOME/IP) middleware. No complex configurations are needed: simple high-level rules, clearly stating the communications allowed, are the only element required to enable the security features. The designed solution has been implemented as a proof of concept (PoC) inside the vsomeip stack to evaluate the validity of the approach proposed: experimental measurements confirm that the additional overhead introduced in end-to-end communication is negligible

    Towards a Realistic Optimization of Urban Traffic Flows

    No full text
    In spite of recent advances in Intelligent Transport, vehicular traffic dynamics are still hard to represent and analyze. Most of the previous work on traffic regards highways or single lanes where vehicles interact in one dimension. Models for multi-dimensional vehicle-to-vehicle interactions and models for urban intersections are quite complicated and hardly applicable on a large scale. Nonetheless, urban traffic jams are an actual problem that requires a solution. This paper proposes a method to optimize urban traffic layout using basic heuristics and computationally efficient simulations. Instead of modeling an entire urban map with hundreds of intersections, each typology of intersection is simulated in order to understand how it responds to different traffic patterns and intensities. This knowledge is leveraged to allow the computation of minimal delay route on the complete road map. In order to validate our model, we use the solution obtained with our heuristic to derive the average travel delay through simulation on realistic Manhattan topologies with different intersection types. \uc2\ua9 2012 IEEE

    Perfezionamenti nella trasmissione di dati o messaggi a bordo di un veicolo mediante un protocollo di comunicazione SOME/IP

    No full text
    In data 23 Aprile 2020 è stata presentata domanda di estensione PCT della domanda di brevetto italiana. Il deposito PCT del brevetto è caratterizzato da numero identificativo IB2020/053851, mentre il titolo tradotto in inglese è "Improvements in the transmission of data or messages on board a vehicle by means of a SOME/IP communication protocol

    Protecting In-Vehicle Services: Security-Enabled SOME/IP Middleware

    No full text
    corecore